

Sean Carroll on The Many Worlds Interpretation

Rebuttal

"The theory decides what we can observe" - Albert Einstein

[or think to observe]

e.g. Galileo pointing a telescope at Jupiter

Tale 1: The Pope and the Misfit				
 Father of the Quantum Atom Collaborated with and mentored dozens of physicists Copenhagen Interpretation 	 Father of Relativity (not popular at the time) Mostly Worked Solo Believed Quantum Mechanics was Incomplete 			
Continual (Collegial) Engagements between the two with Thought Experiments Culminating in the Einstein-Podolsky-Rosen "Paradox"				
Treated with Reverence	Treated as Esoteric			
	hestrowerpolatemplates.com			
33	esspone pointempiles con			

Tale 2: Money and War J. Robert Oppenheimer David Bohm Leader in the Manhattan • Pilot-Wave Interpretation Project Joined the Communist • "If Bohr was God, Party in Berkeley 'Oppie' was his prophet" • Was persecuted and "If we cannot disprove fled to Brazil Bohm, then we must Upset both Bohr AND agree to ignore him" Einstein with non-locality John Bell (and experimentalists) proved that both Quantum Mechanics and Relativity could not be correct as is Incidentally proving Bohm's non-local Pilot-Wave description was valid

<section-header>Displace and References See and a construction of the second second

Bell's Inequality: No slower-than-light hidden variables

Cornell University Library	We grate	gratefully acknowledge support from the Simons Foundation and member institutions	
arXiv.org > quant-ph > arXiv:1508.05949		All papers 🗸 🔍	
	(Help Advanced search)		
Quantum Physics	D	Download:	
Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km B. Hensen, H. Bernien, A.E. Dréau, A. Reiserer, N. Kalb, M.S. Blok, J. Ruitenberg, R.F.L. Vermeulen, R.N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D.J. Twitchen, D. Elkouss, S. Wehner, T.H. Taminiau, R. Hanson (Submitted on 24 Aug 2015)		PDF Other formats (license)	
		rrent browse context: ant-ph rev next > v recent 1508	
For more than 80 years, the counterintuitive predictions of quantum theory have stimulated debate about the nature of reality. In his seminal work, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory. Bell showed that in any local realist theory the correlations between distant measurements satisfy an inequality and, moreover, that this inequality can be violated according to quantum theory. This provided a recipe for experimental tests of the fundamental principles underlying the laws of nature. In the past decades, numerous ingenious Bell inequality tests have been reported. However, because of experimental limitations, all experiments to date required additional		ferences & Citations INSPIRE HEP (refers to cited by) NASA ADS	
		blog links (what is this?)	
assumptions to obtain a contradiction with local realism, resulting in loopholes. Here we report on a Bell experiment that is free of any such a assumption and thus directly tests the principles underlying Bell's inequality. We employ an event-ready scheme that enables the generation fidelity entanolement between distant electron spins. Efficient soin readout avoids the fair samption assumption (detection loophole), while it	additional Bo n of high-	okmark (what is this?) X 🔀 📲 🔐 🛱 🗱	
fast random basis selection and readout combined with a spatial separation of 1.3 km ensure the required locality conditions. We perform 24 testing the CHSH-Bell inequality $S \le 2$ and find $S = 2.42 \pm 0.20$. A null hypothesis test yields a probability of $p = 0.039$ that a local-real for space-like separated sites produces data with a violation at least as large as observed, even when allowing for memory in the devices. T rules out large classes of local realist theories, and paves the way for implementing device-independent quantum-secure communication an randomness certification.	45 trials alist model This result ad		
		bestpowerpointtemplates.com	

Path Integrals and Choices

How does light travel?
A) Along one straight path?
B) Along every possible path?
A) and B) give the same result!

